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Abstract. With the aim of generating new constraints on the OZI suppressed couplings of chiral perturbation
theory a set of six equations of the Roy and Steiner type for the S- and P -waves of the πK scattering
amplitudes is derived. The range of validity and the multiplicity of the solutions are discussed. Precise
numerical solutions are obtained in the range E � 1 GeV which make use as input, for the first time, of the
most accurate experimental data available at E � 1 GeV for both πK → πK and ππ → KK amplitudes.
Our main result is the determination of a narrow allowed region for the two S-wave scattering lengths.
Present experimental data below 1 GeV are found to be in generally poor agreement with our results. A
set of threshold expansion parameters, as well as sub-threshold parameters are computed. For the latter,
a matching with the SU(3) chiral expansion at NLO is performed.

1 Introduction

Scattering amplitudes of pseudo-Goldstone bosons at low
energies probe with a unique sensitivity the scalar-source
sector of chiral perturbation theory (ChPT) [1,2]. For in-
stance, recent progress in the domain of ππ scattering has
provided valuable information on the SU(2) chiral limit
where the masses of the u, d quarks are set to zero. For this
purpose, theππRoy equations,whichhave been extensively
studied in the past [3–5], were re-analyzed [6] (in particular,
a formulation as a boundary value problem was developed)
and solved numerically [6,7] (see also [8]). These equations
constrain the low-energy ππ scattering amplitude by ex-
ploiting simultaneously theoretical requirements and data
at higher energies. New data on Kl4 decays from the E865
experiment [9] could thus be studied with the help of the
solutions to the Roy equations and a bound on the cou-
pling constant �̄3 of the SU(2) chiral Lagrangian [10] was
derived for the first time. Constraints on the SU(2) quark
condensate were also obtained along similar lines [11].

In a parallel way, scattering amplitudes involving both
pions and kaons at very low energy should allow one to
unveil features of the SU(3) chiral vacuum, i.e. that in
the limit where mu, md and ms vanish. The structure of
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the SU(3) chiral vacuum is worth studying for its own
sake, since SU(3) ChPT provides relations between many
low-energy processes involving π-,K- and η-mesons. In ad-
dition, it is interesting to compare SU(2) and SU(3) chiral
limits, especially in the scalar sector. A sizable difference
between the two limits would indicate that sea-quark ef-
fects are particularly significant in the case of the strange
quark [12,13].

In previous works [14, 15] it was shown that the ratio
of the pion’s decay constant in SU(2) and SU(3) chiral
limits could be determined from a sum rule based on πK
scattering amplitudes. The deviation of this ratio from 1
would indicate a violation of the large-Nc approximation.
Let us emphasize that the latter is often relied upon to
attribute values to some O(p4) couplings arising in the
scalar sector of the chiral Lagrangian [2, 16]. Our work is
motivated by the desire of determining from πK scattering
experimental data as many chiral couplings as possible (in
principle, five out of the ten independent O(p4) couplings
of the SU(3) chiral Lagrangian [17, 18]), without relying
on the large-Nc approximation. In this paper, we provide
the first step of this analysis, by deriving the analogue of
the Roy equations for the πK system and solving them
numerically. A simple matching with the SU(3) expansion
is performed, while more detailed comparisons with SU(2)
and SU(3) expansions are left for future work. Further
motivation for the study of πK scattering can be found
in [19,20].

In the case of ππ scattering, Roy observed [21] that
the general properties of analyticity, unitarity, combined
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with crossing symmetry, lead to a set of non-linear integral
equations that the S- and P -partial waves must satisfy. A
similar program was carried out by Steiner for πN scatter-
ing [22]. Given experimental input at high energies (typ-
ically E � 1 GeV), Roy–Steiner (RS) equations constrain
the low-energy behavior of partial-wave amplitudes. In the
present paper, we derive and perform a detailed analysis of
a system of RS equations for πK scattering. In this case, s–t
crossing relates the πK → πK and the ππ → KK ampli-
tudes, leading to six coupled equations that involve the four
πK S andP partial-wave amplitudes f1/2

0 , f
1/2
1 , f

3/2
0 , f

3/2
1

and the two ππ → KK amplitudes g0
0 , g

1
1 . Equations of

a similar kind have been considered earlier [23–25]. How-
ever, some approximations were invoked in the treatment
of these equations and, moreover, no accurate experimental
input data were available at that time. Since then, high-
statistics production experiments have been performed for
both πK → πK [26,27] and ππ → KK amplitudes [28,29].
These experiments provide the necessary input data for the
RS equations with a level of accuracy comparable to the
case of ππ scattering. Experimental data at lower energies
should also be available in the near future: the FOCUS
experiment [30] has demonstrated the feasibility of deter-
mining the πK S-wave phase shifts at energies lower that
1 GeV from the weak decays of D-mesons [31], P -wave
phase shifts should be measured soon in τ decays [32] and
finally, direct determinations of combinations of S-wave
scattering lengths are expected from planned experiments
on kaonic atoms [33].

The plan of this paper is as follows. After reviewing the
notation, we derive the set of RS equations that we intend
to solve. The setting is similar to a previous work [25] but
we differ in the number of subtractions used in the disper-
sive representations. We aim here at an optimal use of the
energy region where accurate experimental data are avail-
able, while avoiding to rely on slowly convergent sum rules.
After discussing the domains of validity of such equations,
we explain our treatment of the available experimental in-
put and of the asymptotic regions. Next, we start solving
the equations. One first eliminates g0

0 and g1
1 , and the re-

maining four equations then have a similar structure to
the ππ Roy equations such that recent results concerning
the multiplicity of the solutions [34, 35] can be exploited.
Finally, we turn to the numerical resolution and discuss
the resulting constraints on the S-wave scattering lengths.
Finally, the πK amplitudes near and below threshold are
constructed and estimates for the O(p4) chiral coupling
constants obtained from matching with the SU(3) expan-
sion are given.

2 Derivation of the equations

2.1 Notation

Let us recall briefly some standard notation [36]. Firstly,
we define from the pion and kaon masses

m± = mK ±mπ, Σ = m2
K +m2

π, ∆ = m2
K −m2

π . (1)

In this paper, exact isopin symmetry will always be as-
sumed. In the isospin limit, there are two independent πK
amplitudes F I(s, t), with isospin I = 1

2 and I = 3
2 . Making

use of s–u crossing, the I = 1
2 amplitude can be expressed

in terms of the I = 3
2 one,

F
1
2 (s, t, u) = −1

2
F

3
2 (s, t, u) +

3
2
F

3
2 (u, t, s) . (2)

It is convenient to introduce the amplitudes F+ and F−
which are, respectively, even and odd under s–u crossing.
In terms of isospin amplitudes, they are defined as

F+(s, t, u) =
1
3
F

1
2 (s, t, u) +

2
3
F

3
2 (s, t, u),

F−(s, t, u) =
1
3
F

1
2 (s, t, u) − 1

3
F

3
2 (s, t, u) . (3)

The partial-wave expansion of the πK isospin ampli-
tudes is defined as

F I(s, t) = 16π
∑

l

(2l + 1)Pl(zs)f I
l (s) , (4)

where Pl(z) are the standard Legendre polynomials and zs

is the cosine of the s-channel scattering angle

zs = 1 +
2st
λs

with λs = (s−m2
+)(s−m2

−) . (5)

In a similar way we can expand F+ and F−, and the cor-
responding partial-wave projections are denoted by f+

l (s)
and f−

l (s). The amplitudes can be projected over the par-
tial waves through

f I
l (s) =

s

16πλs

∫ 0

−λs/s

dt Pl(zs)F I(s, t) . (6)

The values of the amplitudes at threshold define theS-wave
scattering lengths, with the following conventional normal-
ization:

aI
0 =

2
m+

f I
0 (m2

+) (7)

(and similarly for a±
0 in terms of f±

0 (m2
+)).

Under s–t crossing, one generates the I = 0 and I = 1
ππ → KK amplitudes,

G0(t, s, u) =
√

6F+(s, t, u),

G1(t, s, u) = 2F−(s, t, u) . (8)

The partial-wave expansion of the ππ → KK amplitudes
is conventionally defined as

GI(t, s) = 16π
√

2
∑

l

(2l + 1) [qπ(t)qK(t)]l Pl(zt)gI
l (t) ,

(9)
where the summation runs over even (odd) values of l for
I = 0 (I = 1) due to Bose symmetry in the ππ channel. In
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this expression the momenta qπ, qK and the cosine of the
t-channel scattering angle zt are given by

qP (t) =
1
2

√
t− 4m2

P , zt =
s− u

4qπ(t)qK(t)
. (10)

The relations between these partial-wave amplitudes
and the S-matrix elements are easily worked out:

[
SI

l (s)
]
πK→πK

= 1 + 2i
√
λs

s
θ(s−m2

+)f I
l (s), (11)

[
SI

l (t)
]
ππ→KK

= 4i
(qπ(t)qK(t))l+1/2

√
t

θ(t− 4m2
K)gI

l (t) .

2.2 Fixed-t based dispersive representation

To derive the RS equations, we assume the validity of
the Mandelstam double-spectral representation [37] from
which one can derive a variety of dispersion relations (DR’s)
for one variable1. According to the Froissart bound [40],
two subtractions are needed at most for F+ and one sub-
traction for F− (because s− u can be factored out in the
latter case). More detailed information about asymptotic
behavior is provided by Regge phenomenology [41], ac-
cording to which two subtractions are indeed necessary for
F+ while an unsubtracted DR is expected to converge for
F−. However, convergence is rather slow in the latter case
since the integrand behaves like (s′)−3/2 asymptotically.
Therefore, we choose to make use of a once-subtracted DR
for F− in order to improve the convergence and reduce the
sensitivity to the high-energy domain.

Fixed-t DR’s for F+ and F−, with the number of sub-
tractions as discussed above can be written in the follow-
ing form:

F+(s, t) = c+(t)

+
1
π

∫ ∞

m2
+

ds′

×
[

1
s′ − s

+
1

s′ − u
− 2s′ − 2Σ − t

λs′

]
ImF+(s′, t) ,

F−(s, t)
s− u

= c−(t)

+
1
π

∫ ∞

m2
+

ds′

×
[

1
(s′ − s)(s′ − u)

− 1
λs′

]
ImF−(s′, t) . (12)

These expressions involve two unknown functions of t: c+(t)
and c−(t). The basic idea for determining these functions
is to invoke crossing [21, 22], which can be implemented
in various ways: for instance, one can use fixed-s or fixed-
(s−u)DR’s.After trying several possibilities, we found that

1 For the πK amplitude, the existence of fixed-t DR can
be established on more general grounds in a finite domain of
t [38, 39].

DR’s at fixed us provide the largest domain of applicability
(these relations, sometimes called hyperbolic DR’s, were
exploited in [25]). We start with a special set of hyperbolic
DR’s (more general hyperbolic DR’s will be considered
later) in which

us = ∆2 . (13)

The condition above fixes s and u to be functions of t:

s ≡ s∆(t) =
1
2

(
2Σ − t+

√
(t− 4m2

π)(t− 4m2
K)
)
,

u ≡ u∆(t) =
1
2

(
2Σ − t−

√
(t− 4m2

π)(t− 4m2
K)
)
.

(14)

According to Regge theory, the function F+(s∆, t) sat-
isfies a once-subtracted DR which is slowly converging.
Like in the case of the fixed-t DR for F−, we choose to
improve the convergence by using a twice-subtracted rep-
resentation. On the other hand, the function F−(s∆, t) is
expected to satisfy an unsubtracted DR which is well con-
verging. Making use of the fact that s∆(0) = m2

+, these
DR’s can be written in the following way:

F+(s∆, t) = 8πm+a
+
0 + b+t

+
1
π

∫ ∞

m2
+

ds′

×
[
2s′ − 2Σ + t

λs′ + s′t
− 2s′ − 2Σ − t

λs′

]
ImF+(s′, t′∆)

+
t2√
6π

∫ ∞

4m2
π

dt′

(t′)2(t′ − t)
ImG0(t′, s′

∆) ,

F−(s∆, t)
s∆ − u∆

=
8πm+a

−
0

m2
+ −m2−

+
1
π

∫ ∞

m2
+

ds′
[

1
λs′ + s′t

− 1
λs′

]
ImF−(s′, t′∆) (15)

+
t

2π

∫ ∞

4m2
π

dt′

t′(t′ − t)
Im

G1(t′, s′
∆)√

(t′ − 4m2
π)(t′ − 4m2

K)
.

In these equations, we have used the following notation:

s′
∆ = s∆(t′), t′∆ = 2Σ − s′ − ∆2

s′ , (16)

togetherwith the relation (s′−s∆(t))(s′−u∆(t)) = λs′+s′t.
These representations involve three subtraction con-

stants: the two scattering lengths a+
0 , a−

0 and an additional
parameter denoted b+. Let us now show that the latter
can be computed through a rapidly convergent sum rule.
We notice first that a−

0 and b+ satisfy slowly convergent
sum rules,

8πm+a
−
0

m2
+ −m2−

=
1
π

∫ ∞

m2
+

ds′

λs′
ImF−(s′, t′∆)

+
1
2π

∫ ∞

4m2
π

dt′

t′
Im

G1(t′, s′
∆)√

(t′ − 4m2
π)(t′ − 4m2

K)
.
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b+ =
−1
π

∫ ∞

m2
+

ds′

λs′
ImF+(s′, t′∆)

+
1√
6π

∫ ∞

4m2
π

dt′

(t′)2
ImG0(t′, s′

∆) . (17)

By combining these two sum rules, we can express the pa-
rameter b+ as a sumrulewhichhas better convergence prop-
erties:

b+ =
8πm+a

−
0

m2
+ −m2−

− 1
π

∫ ∞

m2
+

ds′

λs′
Im
[
F+(s′, t′∆) + F−(s′, t′∆)

]
(18)

+
1
π

∫ ∞

4m2
π

dt′

t′

× Im

[
G0(t′, s′

∆)√
6t′

− G1(t′, s′
∆)

2
√

(t′ − 4m2
π)(t′ − 4m2

K)

]
.

Why does this sum rule converge more quickly? In the
first integral, the combination F+ + F− appears, which
is the amplitude for the process π+K− → π+K−. The
asymptotic region of the integrand corresponds to s → ∞,
u → 0. The amplitude in this region is controlled by the
Regge trajectories in the u-channel which is exotic, leading
to a fast decrease of the integrand. In the second integral,
the high-energy tail involves the combination 1√

6
G0(t′, s′)−

1
2G

1(t′, s′) for t′ → ∞ and s′ → 0. The leading Regge
contributions are generated by theK∗∗ andK∗ trajectories

lim
t→∞, s→0

Im
[

1√
6
G0(t, s) − 1

2
G1(t, s)

]

= βK∗∗(s)tαK∗∗ (s) − βK∗(s)tαK∗ (s) . (19)

This difference would vanish if Regge trajectories satisfied
exactly the property of exchange degeneracy. In nature,
this property is not exact but it has long been observed
to be approximately fulfilled2 (see e.g. [41] ), which should
lead to a significant suppression of the integrand at high
energies. Therefore, the two integrals involved in (18) are
expected to converge quickly, providing a determination of
b+ with only a mild sensitivity to high energies.

Combining the two dispersive representations (12) and
(15) for the amplitudes F+ and F−, the subtraction func-
tions in (12) get determined in terms of the two S-wave
scattering lengths and we obtain the following representa-
tion for the two amplitudes:

F+(s, t) = 8πm+a
+
0 + b+t

+
1
π

∫ ∞

m2
+

ds′

2 The underlying reason for this property is not understood
but could be related to the possibility that the large-Nc limit
of QCD is described by a string theory [42,43].

×
[

1
s′ − s

+
1

s′ − u
− 2s′ − 2Σ + t

λs′ + s′t

]
ImF+(s′, t)

+
1
π

∫ ∞

m2
+

ds′
[
2s′ − 2Σ + t

λs′ + s′t
− 2s′ − 2Σ − t

λs′

]
ImF+(s′, t′∆)

+
t2√
6π

∫ ∞

4m2
π

dt′

(t′)2(t′ − t)
ImG0(t′, s′

∆) ,

F−(s, t) =
8πm+a

−
0

m2
+ −m2−

(s− u)

+
1
π

∫ ∞

m2
+

ds′ (20)

×
[

1
s′ − s

− 1
s′ − u

− s− u

λs′ + s′t

]
ImF−(s′, t)

+ (s− u)

{
1
π

∫ ∞

m2
+

ds′
[

1
λs′ + s′t

− 1
λs′

]
ImF−(s′, t′∆)

+
t

2π

∫ ∞

4m2
π

dt′

t′(t′ − t)
Im

G1(t′, s′
∆)√

(t′ − 4m2
π)(t′ − 4m2

K)

}
,

where the parameter b+ is to be expressed in the terms
of the sum rule (18). The domain of applicability of this
representation is limited by the domain of validity of the
fixed-t DR’s, (12). In Sect. 3, we will show that the fixed-t
DR’s hold for t < 4m2

π, which enables us to perform the
projection of (20) on πK → πK partial waves. We will
also need a representation which is valid for t ≥ 4m2

π in
order to obtain equations for the ππ → KK̄ partial waves.
For this purpose, we now consider a family of hyperbolic
DR’s.

2.3 Fixed-us dispersive representation

Letus consider a general family of hyperbolicDR’s forwhich

us = b (21)

is fixed. b is a parameter with (a priori) arbitrary values
and should not be confused with the subtraction constant
b+ introduced in the previous section. We write down a
twice-subtracted representation for F+(sb, t) and a once-
subtracted one for F−(sb, t),

F+(sb, t) = f+(b) + th+(b)

+
1
π

∫ ∞

m2
+

ds′

×
[
2s′ − 2Σ + t

λb
s′ + s′t

− 2s′ − 2Σ − t

λb
s′

]
ImF+(s′, t′b)

+
t2√
6π

∫ ∞

4m2
π

dt′

t′2(t′ − t)
ImG0(t′, s′

b) ,

F−(sb, t)
sb − ub

= f−(b)
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+
1
π

∫ ∞

m2
+

ds′
[

1
λb

s′ + s′t
− 1
λb

s′

]
ImF−(s′, t′b)

+
t

2π

∫ ∞

4m2
π

dt′

t′(t′ − t)
Im

G1(t′, s′
b)

s′
b − u′

b

, (22)

with the notation

s′
b =

1
2

(
2Σ − t′ +

√
(2Σ − t′)2 − 4b

)
,

t′b = 2Σ − s′ − b

s′ , (23)

λb
s′ = (s′)2 − 2Σs′ + b .

The representations (22) are a generalization of the
DR’s (15) derived for us = ∆2. They involve three un-
known functions of b: f+(b), f−(b) and h+(b) (which gen-
eralize the subtraction constants of (15)) The two functions
f+(b), f−(b) can be determined by matching (22) with the
representations (20) at the point t = 0 (which lies inside
their domain of validity). Next, the function h+(b) can
be expressed as a rapidly convergent sum rule analogous
to (18). Putting things together, one finally obtains the fol-
lowing representations involving the two S-wave scattering
lengths a+

0 , a−
0 as the only arbitrary constants:

F+(sb, t) = 8πm+

(
a+
0 + t

a−
0

m2
+ −m2−

)

+
1
π

∫ ∞

m2
+

ds′
{

2s′ − 2Σ + t

λb
s′ + s′t

ImF+(s′, t′b)

− 2s′ − 2Σ
λb

s′
Im
[
F+(s′, t′b) − F+(s′, 0)

]

− t

λb
s′

Im
[
F−(s′, t′b) − F−(s′, 0)

]

− 2s′ − 2Σ
λs′

ImF+(s′, 0) − t

λs′
ImF−(s′, 0)

}

+
t

π

∫ ∞

4m2
π

dt′

t′

[
ImG0(t′, s′

b)√
6(t′ − t)

− Im
G1(t′, s′

b)
2(s′

b − u′
b)

]
,

F−(sb, t)
sb − ub

=
8πm+a

−
0

m2
+ −m2−

+
1
π

∫ ∞

m2
+

ds′

×
{

1
λb

s′ + s′t
ImF−(s′, t′b) − 1

λs′
ImF−(s′, 0)

− 1
λb

s′
Im
[
F−(s′, t′b) − F−(s′, 0)

]}

+
t

2π

∫ ∞

4m2
π

dt′

t′(t′ − t)
Im

G1(t′, s′
b)

s′
b − u′

b

. (24)

These representations will allow us to perform projections
on the t-channel partial waves for t ≥ 4m2

π.

2.4 RS equations for fI
l (s)

RS equations can now be obtained by performing the
partial-wave projections of the dispersive representations
obtained above. Projecting (20) on the l = 0, 1 πK → πK
amplitude we get the first four equations,

Re f
1
2
l (s) = k

1
2
l (s)

+
1
π

−
∫ l′=0,1

∞
m2

+ds
′ ∑

l′=0,1

{
4
3
Kα

ll′(s, s
′) Im f

3
2
l′ (s′)

+
(
δll′

λs

(s′ − s)λs′
− 1

3
Kα

ll′(s, s
′)
)

Im f
1
2
l′ (s′)

}

+
1
π

∫ ∞

4m2
π

dt′
{
K0

l0(s, t
′) Im g0

0(t′) + 2K1
l1(s, t

′) Im g1
1(t′)

}

+d
1
2
l (s) ,

Re f
3
2
l (s) = k

3
2
l (s)

+
1
π

−
∫ l′=0,1

∞
m2

+ds
′ ∑

l′=0,1

{
2
3
Kα

ll′(s, s
′) Im f

1
2
l′ (s′)

+
(
δll′

λs

(s′ − s)λs′
+

1
3
Kα

ll′(s, s
′)
)

Im f
3
2
l′ (s′)

+
1
π

∫ ∞

4m2
π

dt′
{
K0

l0(s, t
′) Im g0

0(t′) −K1
l1(s, t

′) Im g1
1(t′)

}

+d
3
2
l (s) . (25)

The domain of validity in s of these equations is given
by (53) below. In these equations, the terms kI

l (s) con-
tain the contributions associated with the subtraction con-
stants,

kI
0(s) =

1
2
m+a

I
0

+
λs

32πs

×
(

−b+ +
(

−3I +
7
2

)
8πm+a

−
0

m2
+ −m2−

3s+m2
−

s−m2−

)
,

kI
1(s) =

λs

96πs

(
b+ +

(
−3I +

7
2

)
8πm+a

−
0

m2
+ −m2−

)
. (26)

The equations involve three kinds of kernels Kα
ll′(s, s

′),
KI

ll′(s, t
′), andKσ

ll′(s, s
′) (which appear only in the driving

terms dI
l ). The kernels Kα

ll′ read, for l, l′ = 0, 1,

Kα
00(s, s

′) = −λs + 2s(s′ − s)
2sλs′

+ L(s, s′) ,

Kα
01(s, s

′) =
3(λs + 2s(s′ + s))

2sλs′

−3(λs′ + 2ss′ − 2∆2)
λs′

L(s, s′) ,
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Kα
10(s, s

′) =
λ2

s + 12s2λs′

6sλsλs′
− (λs + 2ss′ − 2∆2)

λs
L(s, s′) ,

Kα
11(s, s

′) = −12s2(λs′ + 2ss′ − 2∆2) + λ2
s

2sλsλs′
(27)

+
3(λs + 2ss′ − 2∆2)(λs′ + 2ss′ − 2∆2)

λsλs′
L(s, s′) ,

with

L(s, s′) =
s

λs

[
log(s′ + s− 2Σ) − log

(
s′ − ∆2

s

)]
. (28)

Next, the kernels K0
0l′ , K

0
1l′ (with l′ even) read

K0
0l′(s, t

′) =
2l′ + 1√

3
(q′

πq
′
K)l′ s

λs

×
{

log
(

1 +
λs

st′

)
− λs

st′

(
1 − λs

2st′

)}

K0
1l′(s, t

′) =
2l′ + 1√

3
(q′

πq
′
K)l′ s

λs
(29)

×
{(

1 +
2st′

λs

)
log
(

1 +
λs

st′

)
− 2 − 1

6

(
λs

st′

)2
}

.

Finally, the kernels K1
0l′ , K

1
1l′ (with l′ odd) read

K1
0l′(s, t

′) =
√

2(2l′ + 1)
8

(q′
πq

′
K)l′−1

×
{
s(2s− 2Σ + t′)

λs

[
log
(

1 +
λs

st′

)
− λs

st′

]
+

λs

2st′

}
,

K1
1l′(s, t

′) =
√

2(2l′ + 1)
8

(q′
πq

′
K)l′−1

×
{
s(2s− 2Σ + t′)

λs
(30)

×
[(

1 +
2st′

λs

)
log
(

1 +
λs

st′

)
− 2
]

− λs

6st′

}
.

The analyticity properties of the partial-wave amplitudes
f I

l (s) were established in [44]. They can be recovered by
considering the various kernels. In particular, the circular
cut is generated by the kernels KI

ll′(s, t
′).

The terms dI
l (s) are the so-called driving terms in which

the contributions from the partial waves with l′ ≥ 2 are col-
lected:

dI
l (s) =

1
π

∫ ∞

m2
+

ds′ ∑
l′≥2{(

Kσ
ll′(s, s

′) +
2
3
(I − 1)Kα

ll′(s, s
′)
)

Im f
1
2
l′ (s′)

+
1
3
(−2I + 5)Kα

ll′(s, s
′) Im f

3
2
l′ (s′)

}

+
1
π

∫ ∞

4m2
π

dt′
∑
l′≥1

{
K0

l2l′(s, t
′) Im g0

2l′(t
′)

+
(

−3I +
7
2

)
K1

l2l′+1(s, t
′) Im g1

2l′+1(t
′)
}
. (31)

The kernels Kσ
ll′(s, s

′) appear in the driving terms only;
the first few which are non-vanishing read

Kσ
02(s, s

′) =
5λs

s(λs′)2

Kσ
03(s, s

′) =
−35(λs)2s′(ss′ −∆2)

3s2(λs′)3
(32)

Kσ
13(s, s

′)

=
7λs(ss′ −∆2)((s+ s′)(ss′ +∆2) − 4ss′Σ)

3s2(λs′)3
.

2.5 RS equations for g0
0(t), g1

1(t)

In order to obtain a closed system of equations we now
need two equations yielding the real parts of g0

0(t) and
g1
1(t) valid for positive values of t. They can be obtained

from the family of fixed-us DR’s of (24). Using the relation
between the cosine of the t-channel scattering angle zt and
the parameter b,

z2
t =

(2Σ − t)2 − 4b
(2Σ − t)2 − 4∆2 , (33)

the projection is carried out by using

g0
0(t) =

√
3

16π

∫ 1

0
dzt F

+(sb, t) ,

g1
1(t) =

4
√

2
16π

∫ 1

0
dzt z

2
t

F−(sb, t)
sb − ub

. (34)

This yields the following two equations for g0
0 , g1

1 ,

g0
0(t) =

√
3m+

2

(
a+
0 +

ta−
0

m2
+ −m2−

)

+
t

π

∫ ∞

4m2
π

dt′

t′
Im g0

0(t′)
t′ − t

− 3
√

6
8

t

π

∫ ∞

4m2
π

dt′

t′
Im g1

1(t′)

+
1∑

l′=0

1
π

∫ ∞

m2
+

ds′ [G+
0l′(t, s

′) Im f+
l′ (s′)

+tG−
0l′(t, s

′) Im f−
l′ (s′)

]
+ d0

0(t) ,

g1
1(t) =

2
√

2m+a
−
0

3(m2
+ −m2−)

+
t

π

∫ ∞

4m2
π

dt′

t′
Im g1

1(t′)
(t′ − t)

+
1
π

∫ ∞

m2
+

ds′ [G−
10(t, s

′) Im f−
0 (s′)

+G−
11(t, s

′) Im f−
1 (s′)

]
+ d1

1(t) . (35)

The two equations (35) together with the four equations
(25) form a complete set of Roy–Steiner type equations.
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The domain of validity of the equations for g0
0 , g1

1 is given
in (54) below.

The equation for g0
0 involves three kinds of kernels:

G±
0l′(t, s

′), GI
0l′(t, t

′). The kernels G±
0l′(t, s

′) have the fol-
lowing form:

G+
0l′(t, s

′) =
√

3(2l′ + 1)

×
{

2G(x)
s′ −Σ + t/2

Pl′(zs′)

− (2s′ − 2Σ + t)
λs′

Al′(t, s′) − tBl′(t, s′)
λs′

}
,

G−
0l′(t, s

′) =
√

3(2l′ + 1)
Bl′(t, s′)
λs′

, (36)

where Pl′ are Legendre polynomials and

G(x) =
arctanh(x)

x
, (37)

x =
√
Qt

2s′ − 2Σ + t
, Qt = (t− 4m2

π)(t− 4m2
K) .

We collect below the expressions for the first few of the
terms Al(t, s′), Bl(t, s′):

A0(t, s′) = 1,

A1(t, s′) = 1,

A2(t, s′) = 1 +
6s′t
λs′

,

A3(t, s′) = 1 +
10s′t
λs′

+
10s′t(−Qt + 6s′t)

3λ2
s′

,

B0(t, s′) = −1,

B1(t, s′) = 1,

B2(t, s′) = −
(

1 +
Qt

λs′

)
,

B3(t, s′) = 1 +
5Qt

3λs′
+

2Q2
t

3λ2
s′
. (38)

Finally, we quote a few of the kernelsG0
02l′(t,t

′),G1
02l′+1(t,t

′):

G0
02(t, t

′) =
5
16

(t′ + t− 4Σ) ,

G0
04(t, t

′) =
3

256
(t′ + t− 4Σ)

× [3t′(t′ − 4Σ) − 7t(t− 4Σ) − 64m2
πm

2
K

]
,

G1
03(t, t

′) =
−7

√
6

384
(39)

× [3t′(t′ − 4Σ) − 5t(t− 4Σ) − 32m2
πm

2
K

]
.

In the RS equation for g1
1 , (35), one finds two kinds of

kernelsG−
1l′(t, s

′) andG1
1l′(t, t

′). The kernelsG−
1l′(t, s

′) have
a structure similar to G±

0l′(t, s
′) encountered above,

G−
1l′(t, s

′) = 4
√

2(2l′ + 1) (40)

×
{

F (x)
(s′ −Σ + t/2)2

− 1
3λs′

+ Cl′(t, s′)
}
,

with
F (x) =

1
x2 (G(x) − 1) . (41)

G(x) is defined in (37) and both F and G are smooth
functions around 0. The pieces Cl′(t, s′) vanish for l′ = 0, 1
and, for l′ = 2, 3, read

C2(t, s′) = −2s′t
λ2

s′
, (42)

C3(t, s′) =
2s′t

[
(2s′ − 2Σ + t)2 − 9λs′ − 14s′t

]
3λ3

s′
.

Finally, we display the first few kernels G1
12l′+1(t, t

′):

G1
13(t, t

′) =
7
48

(t′ + t− 4Σ) ,

G1
15(t, t

′) =
11

3840
(t′ + t− 4Σ) (43)

× [5t′(t′ − 4Σ) − 9t(t− 4Σ) − 64m2
πm

2
K

]
.

These kernels are seen to be polynomials in t, t′.
The driving terms, d0

0(t), d
1
1(t), in (35) have the follow-

ing expressions:

d0
0(t) =

∞∑
l′=2

{
1
π

∫ ∞

m2
+

ds′ [G+
0l′(t, s

′) Im f+
l′ (s′)

+t G−
0l′(t, s

′) Im f−
l′ (s′)

]
+
t

π

∫ ∞

4m2
π

dt′

t′
[
G0

02l′−2(t, t
′) Im g0

2l′−2(t
′)

+G1
02l′−1(t, t

′) Im g1
2l′−1(t

′)
] }

,

d1
1(t) =

∞∑
l′=2

{
1
π

∫ ∞

m2
+

ds′G−
1l′(t, s

′) Im f−
l′ (s′) (44)

+
t

π

∫ ∞

4m2
π

dt′

t′
G1

12l′−1(t, t
′) Im g1

2l′−1(t
′)

}
.

This completes the derivation of a system of equations of
the Roy–Steiner type for πK scattering. Let us now discuss
the domain of validity of these equations.

3 Domains of validity

It is important to assess precisely the domains of validity
of the dispersive representations discussed in the preced-
ing section. For this purpose, we will adapt the methods
reviewed by Höhler for the πN system [45]. The discussion
is based on the assumption that the scattering amplitudes
satisfy theMandelstamdouble-spectral representation [37],
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i.e., a spectral representation in termsof twovariableswhich
involves three spectral functions ρst(s′, t′), ρut(u′, t′) and
ρus(u′, s′). The boundaries of the support of these spec-
tral functions are shown in Fig. 1. This representation and
the expressions for these boundaries are obtained from the
consideration of box diagrams (see for instance [46]). For
the πK amplitude, the st boundary is described by the
two equations

(t− 4m2
π)λ(s,m2

K , 4m
2
π)

−16m4
π(s+ 3m2

K − 3m2
π) = 0 ,

(t− 16m2
π)λ(s,m2

K ,m
2
π) − 64m4

πs = 0 (45)

(the ut boundary is obtained by replacing s by u), while the
us boundary is defined by the following set of equations:

λ(u,m2
K , 4m

2
π)λ(s,m2

K ,m
2
π)

−16m2
πm

2
Kus+ 16m2

π∆
2(m2

K − t) = 0 ,

λ(u,m2
K ,m

2
π)λ(s,m2

K , 4m
2
π)

−16m2
πm

2
Kus+ 16m2

π∆
2(m2

K − t) = 0 , (46)

with

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz . (47)

Let us consider first the fixed-tDR’s. The spectral func-
tions arising in these DR’s must be real, which implies that
the lines of constant t must not cross the double-spectral
boundaries. From Fig. 1 one sees that this condition con-
fines t in the region,

−48m2
π < t < 4m2

π , (48)

where the lower bound comes from the boundary associated
with ρus and the upper bound from the one associated with
ρst. The second restriction on the domain of validity arises
from the fact that the spectral function ImF (s′, t) is needed

in an unphysical region (except if t = 0) and must thus be
defined using the partial-wave expansion. The domain of
convergence of this expansion is the large Lehman ellipse
(see for instance [46]). In terms of the cosine of the s-channel
scattering angle zs′ , this ellipse has focal points zs′ = ±1
and it is limited by the st spectral boundary,

zmax
s′ = 1 +

2s′Tst(s′)
λs′

. (49)

The function Tst(s) is obtained by solving (45) which de-
scribes the st boundary for t as a function of s. The point
−zmax

s′ of the ellipse corresponds to another value of t
given by T ′

st(s) = −λs/s − Tst(s). For each value of s′,
the convergence of the partial-wave expansion is ensured
if −zmax

s′ ≤ zs′ ≤ zmax
s′ , i.e., T ′

st(s
′) < t < Tst(s′). The us

boundary provides another similar constraint, but it turns
out to be weaker than that obtained from the st boundary.
The conjunction of the two constraints (reality of the spec-
tral functions and convergence of the partial expansion)
leads to the fact that the fixed-t dispersion relation for πK
scattering is valid in the range

−23m2
π < t < 4m2

π . (50)

A similar discussion can be carried out for the set of
dispersion relations with us fixed, us = b. Firstly, the
criterion that the hyperbolas us = b do not intersect a
spectral function boundary yields

−700m4
π < b < 1420m4

π (51)

where the lower bound comes from the st boundary and
the upper bound from the us boundary. For the hyperbolic
DR’s, the spectral functions ImF±(s′, t′b), ImGI(t′, s′

b) are
also needed in unphysical regions (unless b = ∆2), so that
the values of bmust be restricted to ensure the convergence
of the partial-wave expansion. Considering the Lehman
ellipse related to ImF±(s′, t′b) restricts the range to

−700m4
π < b < 450m4

π , (52)

and no further restriction arises from the Lehman ellipse
related to ImGI(t′, s′

b).
We can now derive the ranges of validity of the RS

equations, which are obtained by projecting the DR’s over
partial waves. Let us start with the fixed-t DR’s; the pro-
jection over πK partial waves is legitimate provided the
range of integration of (6) is included inside the range of
validity in t of the DR’s. One deduces that the RS equations
for s-channel partial waves (25) are valid for

3m2
π ≤ s ≤ 48m2

π . (53)

In the same way, the projection on ππ → KK̄ partial waves
is allowed only if the range of integration of (34) lies within
the range of validity in b of the fixed-us DR’s. The last two
RS equations (35) are thus valid for:

−15m2
π ≤ t ≤ 70m2

π . (54)
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The range of validity in t is significantly larger than that
in s. This difference stems from Bose symmetry, which ap-
plies only to the ππ → KK̄ channels and implies that only
even (odd) partial waves appear when the isospin is zero
(one). Thus, the t-channel projections can be obtained by
integrating over the limited range 0 ≤ zt ≤ 1, whereas the
projection on s-channel partial waves requires integrating
over the whole range −1 ≤ zs ≤ 1. One notes that it
is possible to project the hyperbolic DR’s over s-channel
partial waves as well. However, the resulting partial-wave
equations are valid in the range s ≤ 43m2

π, which is some-
what smaller than the range of validity of the partial-wave
equations obtained from the fixed-t DR’s.

4 Experimental input

In the previous sections, we have derived a set of RS equa-
tions for the s-channel partial waves for I = 1

2 ,
3
2 and

l = 0, 1, and the t-channel partial waves for (I, l) = (0, 0)
and (1, 1),whichwe call “lowest” partialwaves fromnowon.

Let us consider these equations in the rangesm2
+ ≤ s ≤

sm and 4m2
π ≤ t ≤ tm. The upper limits of which sm, tm

(which will be taken such that the equations are valid, i.e.
sm ≤ 48m2

π, tm ≤ 70m2
π) will be called matching points.

A simple examination of the RS equations shows that in
order to be able to solve for the lowest partial waves below
the matching points the following input must be provided:
(1) the imaginary part of the lowest partial waves for s ≥
sm, t ≥ tm;
(2) the imaginary parts of the l ≥ 2 partial waves above
the thresholds, and
(3) the phases of g0

0(t), g1
1(t) in the range 4m2

π ≤ t ≤ tm.
We will discuss below the experimental status of this input.

For the s-channel partial waves, we choose the matching
point at the border of the range of validity:

sm = 0.935 GeV2 . (55)

The reason for this choice is that the experimental data
available at present come from production experiments.
One expects the precision to decrease as the energy goes
down below 1 GeV. We will see, for instance, that the I = 3

2
S-wave phase shifts seem rather unreliable below 1 GeV. In
the t-channel the range of validity extends, as we have seen,
up to tval � 1.36 GeV2 and one could, in principle, choose
the matching point anywhere between the KK threshold
and tval. In practice, we choose a value slightly above the
KK̄ threshold (see Sect. 6.1)

tm = 1.04 GeV2 . (56)

For the lowest partial waves above the matching point,
and for the higher partial waves, we exploit experimental
data at intermediate energies

E ≤ √
s2 = 2.5 GeV (57)

and Regge models for E >
√
s2. We aim at determining

the lowest partial waves below the matching point. For this

purpose, additional information is needed concerning uni-
tarity.

Wewillmake the usual assumption that elastic unitarity
holds exactly below the matching points [6]. In other terms,
in the πK channel the possible couplings to ππK and πππK
are assumed to be negligibly small in the low-energy region.
For the S-wave the validity of elastic unitarity was observed
experimentally up to the η′K threshold. In principle, theP -
wave can couple to the ππK state but no such coupling has
been detected for the K∗ [53], and potentially important
two-body channels like K∗π, Kρ lie above the matching
point. Similarly, in the ππ channel we assume that the
coupling to 4π can be neglected below the KK threshold.

We discuss now the experimental input used to solve the
RS equations, before explaining in detail their resolution.

4.1 πK → πK data

Phase shift analyses of the πK → πK amplitude have been
performed based on high-statistics production experiments
KN → KπN by Estabrooks et al. [26] and by Aston et
al. [27]. Earlier results are much less precise and we will not
use them in our analysis. The amplitude π+K+ → π+K+,
which is purely I = 3

2 , has been measured by Estabrooks
et al. [26]. In practice the I = 3

2 phase shifts are very small
in the range E � 2 GeV except for the S-wave. This phase
shift is shown in Fig. 2 together with our fit, where a simple
parameterization with three parameters is used:

tan
(
δ
3/2
0 (s)

)
=

αq

1 + βq2 + γq4
. (58)

This parameterization is analogous to the one used in [19].
Inelasticity is neglected in this channel.

The amplitude π+K− → π+K− which involves the
following isospin combination:

F c ≡ F 1/2 +
1
2
F 3/2 , (59)
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Fig. 4. Experimental data from [27] for the phase Φ1 and the
fit used in the calculations
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Fig. 5. Modulus and phase of
the S- and P -partial-waves ampli-
tudes from [27] and the fits in the
region 0.9 ≤ E ≤ 2.5 GeV which
are used in the calculations

was measured both in [26] and [27] – the latter experiment
has better statistics and covers a larger energy range. The
amplitude F c can be expanded over partial waves in the
same way as (4) and [26, 27] provide the phase Φl(s) and
the modulus al(s) of these partial waves,

fc
l (s) ≡ √

2l + 1 al(s)eiΦl(s) . (60)

Performing a combined fit of the I = 3
2 partialwaves [26]

and of the parameters al, Φl [26, 27] one can separate the
two isospin partial waves. The data of Aston et al. for the
phases Φ0 and Φ1 and our fits are displayed in Figs. 3 and
4 respectively in the range 0.9 ≤ E ≤ 1.5 GeV (this energy
region plays an important role in our analysis). The fits
shown here correspond to a parameterization of the partial-
wave S-matrices as products of Breit–Wigner S-matrices,

allowing for inelasticity in the I = 1
2 amplitude to set in

at the ηK threshold. Inelasticity is found to remain quite
small up to E � 1.5 GeV. We also tried different fits based
on K-matrix parameterizations.

The data of Aston et al. and the fits for both al and Φl

for l = 0 to l = 5 and energy up to E = 2.5 GeV are shown
in Figs. 5, 6 and 7. At energies E ≥ 1.8 GeV, [27] found two
different solutions A and B for the phase shifts, between
which we choose solution A (it was pointed out in [19] that
solution B violates the unitarity bound). These fits allow
us to compute the relevant integrals up to E = 2.5 GeV.
Above that point, we use the Regge-model parameteriza-
tion discussed in Sect. 4.3.
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Fig. 6. Same as Fig. 5 for the D-
and F -partial waves
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4.2 ππ → KK input

For our purposes, a key role is played by the l = 0 and
l = 1 ππ → KK amplitudes, which can be determined
from πN → KKN production experiments in the range
t ≥ 4m2

K . We will make use of the two high-statistics exper-
iments described in Cohen et al. [28] and Etkin et al. [29,47].
The experiment of Cohen et al. [28] determines the charged
amplitude π+π− → K+K−, thereby providing results for
both g0

0 and g1
1 . There are several possible solutions but

physical requirements select a single one, called solution II
b in [28]. Close to the KK threshold, the presence of the
l = 1 phase allows the authors to accurately determine the
l = 0 phase. The experiment of Etkin et al. concerns the
amplitude π+π− → KSKS, which is purely I = 0. Because
of the absence of the P -wave in this channel, their deter-
mination of the phase of g0

0 close to the threshold (where
the D-wave phase is very small) is likely to be less reliable
than that of [28].
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Their determination of the magnitude of g0
0 close to

the threshold disagrees with that of Cohen et al. and also
with earlier experiments [48]. Consequently, we make the
choice to use the results of Etkin et al. only in the range√
t ≥ 1.2 GeV.

Our input for the phase of g0
0 is determined as follows.

Below the KK threshold this phase is identical to the ππ
phase shift because of the elastic unitarity assumption. In
the range 2mπ ≤ E ≤ 0.8 GeV we use solutions of the ππ
Roy equations. Simple parameterizations were provided
recently in [6, 11]. We use the parameterization of [11]
together with the scattering lengths corresponding to the
“extended” fit, with the central values a0

0 = 0.228, a2
0 =

−0.0382. In the range E ≥ 2mK we perform piecewise-
polynomial fits of the data of [28,29] andfixing the threshold
value to Φ0

0 = 200 ± 15 degrees. This range is an educated
guess based on considering the data of Cohen et al. as well
as the ππ data. Finally in the range 0.8 GeV ≤ E ≤ 2mK

we perform a fit to the CERN–Munich data as given by
Hyams et al. [49] and to the polarized target production
data recently analyzed by Kaminski et al. [50]. For the
modulus of g0

0 , we have performed piecewise polynomial

fits to the data of [28,29]. The data and these fits are shown
in Fig. 8.

As far as g1
1 is concerned, we use the experimental de-

termination of the ππ P -wave phase in the range 2mπ ≤
E ≤ 2mK obtained from the pion vector form factor mea-
sured by CLEO [51]. This determination is compatible with
the results of the analysis of ππ Roy equations and has a
comparable accuracy. At larger energies, we use the exper-
imental results from Cohen et al. for the phase and the
magnitude of g1

1 . The whole energy range where data are
available can be fitted using the following form:

g1
1(t) =

C

(1 + r1q2π(t))
1
2 (1 + r1q2K(t))

1
2

×
{
BW (t,mρ) + (β + β1q

2
K(t))BW (t,mρ′)

+(γ + γ1q
2
K(t))BW (t,mρ′′)

}
, (61)

with

BW−1(t,mV ) = m2
V − t− i

√
t ΓV

2Gπ(t) +GK(t)
2Gπ(m2

V )
,
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GP (t) =
√
t

(
2qP (t)√

t

)3

. (62)

Below the KK threshold, q2K(t) vanishes and the expres-
sion (61) reduces to the Kühn and Santamaria [52] form
used in [51]. We take the values of the parameters β, γ,mρ,
mρ′ , mρ′′ determined by CLEO and we fit the parameters
C, r1, β1, γ1 to the data above the KK threshold. The
data and the fits are shown in Fig. 9.

The amplitudes with l ≥ 2 play a much less significant
role in our analysis and are suppressed at low energies.
They will be described by simple Breit–Wigner parameteri-
zations associated with the resonances f2(1200), f ′

2(1525),
ρ3(1690), f4(2050). Masses and partial decay widths of
these resonances were taken from the PDG [53].

4.3 Asymptotic regions

As discussed above, we can make use of the partial-wave
expansion and experimental data up to energiesE =

√
s2 =

2.5 GeV for the s- as well as the t-channel. Above that
point we use a description of the amplitudes based on
Regge phenomenology. We will content ourselves with very
unsophisticated models because this energy region turns
out to play a very minor role in our analysis. In the regime
s′ → ∞, t fixed, we use the following expression for the
amplitudes suggested by dual models à la Veneziano [54–57]
(where exact exchange degeneracy is built in):

ImF−(s′, t)|asy ∼ πλ
Γ (αρ + α1t)

(α1s
′)αρ+α1t (63)

and

ImF+(s′, t)|asy ∼ σs′exp
(
bt

2

)
+ ImF−(s′, t)|asy . (64)

For the parameter λ and the pomeron parameters σ, b we
adopt values inspired by the discussion in Appendix B.4
of [6] with large errors:

λ = 14 ± 5 , σ = 5 ± 2.5 mb , b = 8 ± 3 GeV−2 . (65)

The intercept and slope parameters of the Regge trajec-
tories are determined from the experimental spectrum of
the ρ and K∗ resonances,

αK∗
= 0.352, αρ = 0.475, α1 = 0.882 GeV−1 . (66)

For illustration we compare in Fig. 10 the imaginary part
of F−(s, 0) resulting from our fit to the experimental data
and the Regge asymptotic form with λ = 14.

Making use of this, it is easy to evaluate the contribu-
tions to the various dispersive integrals in the range [s2,∞].
In the fixed-t DR’s we obtain

F+(s, t)|s2 =
2(λs + st)

(s2)2

[
σs2
π

exp
bt

2

+
λ

(2 − αρ − α1t)Γ (αρ + α1t)
(α1s2)αρ+α1t

]
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Fig. 10. Comparison of Im F −(s, 0) constructed from experi-
mental data and the Regge asymptotic form (63)

+
t2

(s2)2

[
λ

(2 − αK∗)Γ (αK∗)
(α1s2)αK∗

]
(67)

and

F−(s, t)|s2 =
s− u

(s2)2

[
t

λ(α1s2)αK∗

(2 − αK∗)Γ (αK∗)

+
λs + st

s2

λ(α1s2)αρ+α1t

(3 − αρ − α1t)Γ (αρ + α1t)

]
. (68)

In the same manner we can obtain the asymptotic contribu-
tions in the amplitudes described through hyperbolic DR’s:

F−(sb, t)
sb − ub

∣∣∣∣∣
s2

=
∆2 − b

(s2)3
λ(α1s2)αρ

(3 − αρ)Γ (αρ)

+
t

(s2)2
λ(α1s2)αK∗

Γ (αK∗)

[
1

2 − αK∗ (69)

− b α1

s2(3 − αK∗)

(
log(α1s2) − ψ(αK∗

) +
1

3 − αK∗

)]

and

F+(sb, t)|s2 =
2(∆2 − b)

(s2)2

[
σs2
π

+
λ(α1s2)αρ

(2 − αρ)Γ (αρ)

]

+
t(t− 2Σ)

(s2)2
λ(α1s2)αK∗

Γ (αK∗)

×
[

1
2 − αK∗ − b α1

s2(3 − αK∗)

(
log(α1s2) − ψ(αK∗

)

+
1

3 − αK∗

)]
. (70)

To derive these contributions, we have used the following
expression for ImGI(t′, s′

b) in the regime where t′ → ∞:
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1√
6

ImG0(t′, s′
b)|asy =

1
2

ImG1(t′, s′
b)|asy

=
πλ

Γ (αK∗)
(α1t

′)αK∗

×
{

1 +
α1b

t′
(− log(α1t

′) + ψ(αK∗
))
}
, (71)

in which an expansion to first order in the parameter b has
been performed.

5 Initial steps in the resolution

5.1 Solving for g0
0, g1

1

We have now all the ingredients to solve the set of RS
equations. The first step consists in solving (35) for g0

0 ,
g1
1 . This problem was discussed a long time ago [58, 59]

and we recall the main ideas here for completeness. Elastic
unitarity implies that the phases ΦI

l of these amplitudes,

gI
l (t) ≡ eiΦI

l (t)|gI
l (t)| , (72)

can be identified with the ππ phase shifts δI
l in the unphys-

ical region t < 4m2
K according to Watson’s theorem [60],

and therefore they are known in principle. In the physical
region t ≥ 4m2

K the phases are determined from experiment
as was discussed above.

On the other hand, the modulus of the t-channel partial
waves is not known below the KK̄ threshold, and must be
determined using the equations (35) satisfied by g0

0 and g1
1

which have the following simple form:

g0
0(t) = ∆0

0(t) +
t

π

∫ ∞

4m2
π

dt′

t′
Im g0

0(t′)
t′ − t

,

g1
1(t) = ∆1

1(t) +
t

π

∫ ∞

4m2
π

dt′

t′
Im g1

1(t′)
t′ − t

. (73)

In Sect. 3, we have shown that these relations can be used
up to t � 1.4 GeV2, which includes the whole region in-
accessible to experiment where |g0

0 |, |g1
1 | are needed. The

quantities ∆I
l (t) are analytic functions with a left-hand

cut along the negative t axis and no right-hand cut, as
can be easily verified using (35) and the explicit form of
the kernels provided in Sect. 2. Therefore, determining the
moduli |gI

l (t)| in the range 4m2
π ≤ t ≤ tm from (73) while

the phase is known is a standard Muskhelishvili–Omnès
problem [61, 62]. The most general solution involves ar-
bitrary parameters, the number of which depends on the
value of the phase at the matching point [61]. We have
chosen tm to be slightly larger than 4m2

K . The l = 1 phase
Φ1

1(tm) is lower than π, which implies that the solution
for g1

1 involves no free parameter. The l = 0 phase, as we
argued in the previous section, satisfies π ≤ Φ0

0(tm) < 2π,
such that one free parameter is involved in the solution.
Let us recall the explicit form of the solutions. One first
introduces the Omnès function

ΩI
l (t) = exp

(
t

π

∫ tm

4m2
π

ΦI
l (t

′) dt′

t′(t′ − t)

)
(74)

≡ ΩI
l R(t) exp

[
iΦI

l (t)θ(t− 4m2
π)θ(tm − t)

]
,

where ΩI
l R(t) is real. Then, the solutions of (73) read

g0
0(t) = ∆0

0(t) +
tΩ0

0(t)
tm − t

(75)

×
[
α0 +

t

π

∫ tm

4m2
π

dt′
(tm − t′)∆0

0(t
′) sinΦ0

0(t
′)

Ω0
0R(t′)(t′)2(t′ − t)

+
t

π

∫ ∞

tm

dt′
(tm − t′)|g0

0(t′)| sinΦ0
0(t

′)
Ω0

0R(t′)(t′)2(t′ − t)

]
,

g1
1(t) = ∆1

1(t) + tΩ1
1(t)

[
1
π

∫ tm

4m2
π

dt′
∆1

1(t
′) sinΦ1

1(t
′)

Ω1
1R(t′)t′(t′ − t)

+
1
π

∫ ∞

tm

dt′
|g1

1(t′)| sinΦ1
1(t

′)
Ω1

1R(t′)t′(t′ − t)

]
. (76)

Notice that the integrands are singular when t′ → tm, since
the Omnès function behaves as

ΩI
l R(t′) ∼ |t′ − tm|

φI
l (tm)

π , (77)

but the singularity is integrable. When t → tm the inte-
grands diverge, but this is compensated for by the factor of
ΩI

l (t) multiplying the integrals. It can be shown that the
solution satisfies automatically the first matching condition
(details of the proof are given in Appendix A):

lim
ε→0

gI
l (tm ± ε)|sol = gI

l (tm)|input . (78)

Here, g0
0(t), g1

1(t) are treated in a somewhat different way
from that in [15]. In that work, an additional subtraction
constant was introduced and the values of the subtraction
parameters were fixed by imposing that the values of g1

1(0),
g0
0(0) and d

dtg
0
0(0) be equal to the ChPT prediction at order

p2. Now, the behavior around t = 0 is entirely determined
by solving the full set of equations with the appropriate
boundary conditions – our constraints are dispersive and
do not rely on ChPT results.

At this stage, the formulas (75) and (76) for g0
0(t),

g1
1(t) involve three parameters: the two S-wave scattering

lengths a1/2
0 , a3/2

0 that appear in the expressions for ∆0
0(t),

∆1
1(t) and an additional parameter α0. We will now clarify

their role.

5.2 Matching conditions and uniqueness

Once g0
0(t), g1

1(t) are expressed according to (75) and (76),
the set of four RS equations (25) becomes a closed set of
equations for the four πK partial waves f I

l (s), l = 0, 1,
I = 1

2 ,
3
2 . The structure of these equations is similar to

that of the ππ Roy equations: the kernels consist of a
singular Cauchy part and a regular part, and elastic uni-
tarity provides a non-linear relation between Re f I

l (s) and
Im f I

l (s). The equations must be solved with the bound-
ary condition that the solution phase shifts must equate
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the input phase shifts at the frontier of the region of reso-
lution (matching condition). Therefore, we can apply the
results derived recently [34, 35] concerning the number of
independent solutions in the vicinity of a given solution.
The multiplicity index of one solution is determined by
the values of the input phase shifts at the matching point
s = sm (with sm � 0.935 GeV2). The experimental phase
shifts at s = sm lie in the following ranges:

0 < δ
1/2
0 (sm) <

π
2
,

π
2
< δ

1/2
1 (sm) < π,

δ
3/2
0 (sm) < 0, δ

3/2
1 (sm) < 0. (79)

According to the discussion in [35], the multiplicity index
in this situation is m = 0+1−1−1 = −1, to be compared
withm = 0 in the case of ππ. This means that our situation
corresponds to a constrained system: a solution will not
exist unless the two S-wave scattering lengths lie on a one
dimensional curve.

In practice, however, the phase shift for the I = 3
2 P -

wave is extremely small below 1 GeV and the experimental
input is not precise enough to implement matching con-
ditions in this channel in any meaningful way (see Fig. 17
below). This leads us to treat the I = 3

2 P -wave on the
same footing as the partial waves with l ≥ 2. For instance,
the dispersive representations can be projected on l = 2
and used to compute the real part of f1/2

2 (s) for s ≤ sm,
while the contribution of Im f

1/2
2 (s′) for s′ ≤ sm in the

integrands is negligibly small compared to contributions
from S- and P -waves; it can be evaluated approximately
or even ignored3. Dropping one matching condition, the
effective multiplicity index becomes m = 0 for πK. The
fact that the multiplicity index vanishes means that solu-
tions should exist for arbitrary values of the two S-wave
scattering lengths a1/2

0 , a3/2
0 lying in some two dimensional

region, and each solution is unique.
However, not all solutions are physically acceptable. An

acceptable solution must satisfy the further requirement
that it displays no cusp at the matching point [6]. This con-
dition leads to constraints on the subtraction parameters.
First, let us consider the t-channel, for which we choose
the matching point tm to be slightly larger than the KK
threshold. As discussed in the previous section, the solu-
tion for g0

0(t) involves one parameter α0. While the equality
g0
0 |sol = g0

0 |input is automatically guaranteed by (75), the
solution g0

0 |sol exhibits a sharp cusp at the matching point
in general. Therefore, the no-cusp condition fixes the value
of α0. The same reasoning can be applied to the πK par-
tial waves: imposing the no-cusp condition to the I = 1

2
S- and P -waves provides two equations which should de-
termine, in principle, the two scattering lengths a1/2

0 , a3/2
0 .

In other words, given ideal experimental input data4 with
no errors in the ranges s ≥ sm and t ≥ tm, one should be

3 A second argument to neglect the low-energy contribution
of the imaginary part of this partial wave is provided by the
chiral counting Im f

3/2
1 = O(Im fI

l≥2) = O(p8).
4 The data are assumed to be ideal also in the sense that

they ensure the existence of a solution to the equations [35].

able to fix exactly the two scattering lengths by solving
the RS equations with the appropriate boundary condi-
tions on the values and the derivatives of the phase shifts.
Obviously, the actual situation is different from that ideal
view: the input data are known with errors and only for
discrete values of the energy, which introduces uncertain-
ties on the boundary conditions and thus on the solutions
of the RS equations. This point will be addressed in the
following section.

6 Numerical solutions and results

6.1 Numerical determination of the solutions

We have described how to solve the RS equations for the
ππ → KK̄ partial waves. Assuming that the input for
s > sm is given as well as the input for l ≥ 2 at all energies,
our purpose is to determine the three phase shifts

δ0(s) ≡ δ
1/2
0 (s), δ1(s) ≡ δ

1/2
1 (s) δ2(s) ≡ δ

3/2
0 (s) (80)

in the range m2
+ ≤ s ≤ sm, so that the Roy–Steiner equa-

tions represented symbolically as

Re fa(s) ≡ s

λs
sin(2δa(s)) = Φa

[
δb, s

]
(81)

are satisfied up to a certain accuracy. We introduce a set
of N mesh points m2

+ < si ≤ sm (N was varied between
16 and 30; the results were very stable) and characterize
the accuracy of an approximate solution by the measure

ε = max
i,a

| Re fa(si) − Φa
[
δb, si

] | . (82)

An exact solution, of course, satisfies ε = 0. While it is pos-
sible to search directly for minima of ε, a more appropriate
quantity for minimization algorithms is the chi-square

χ2 =
N∑

i=1

2∑
a=0

| Re fa(si) − Φa
[
δb, si

] |2 , (83)

Fig. 11. Left-hand sides of the RS equations. Equation (25)
(lines) compared to the right-hand sides (points) after mini-
mization in the range m2

+ ≤ s ≤ 0.93 GeV2



424 P. Büttiker et al.: A new analysis of πK scattering from Roy and Steiner type equations

0

1

2

3

4

5

6

0 0.5 1 1.5 2

|g
 11 |

t (GeV2)

RS sol.
Cohen 

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2

|g
 00 |

t (GeV2)

RS sol.
Cohen 

Fig. 12. Comparison of the absolute values of g0
0 and g1

1 obtained from solving the RS equations and the corresponding
experimental input from [28]

which we have minimized using the MINUIT package [63].
Approximations to the πK phase shifts δa(s) are con-
structed in the form of polynomials or piecewise polyno-
mial parameterizations (we tried several forms) similar to
that proposed by Schenk [64]. This is essentially the same
method as in [6] for the ππ Roy equations. The parameters
are constrained so that thephase shifts are continuous at the
matching point and the no-cusp condition applies to δ0(s)
and δ1(s). As discussed in Sect. 5.2, these additional con-
ditions fix the values of the two S-wave scattering lengths,
which are therefore included as two additional parameters
in the minimization of the chi-square.

Let us denote by n(a) the number of parameters in the
representation of δa. Taking n(0) = 3, n(1) = 2, n(2) = 1 we
obtain an approximation to the equation with ε � 5 ·10−3.
Adding one more parameter with n(2) = 2 makes ε go down
to ε � 2 ·10−3 and with still one more parameter, n(2) = 3,
one obtains ε � 1 · 10−3. This provides good evidence that
the approximations are converging to a true solution. Seek-
ing a much higher accuracy would be difficult: all integrals
must be evaluated with a numerical precision better than
ε, and the computation of the phase shifts involve up to
three successive numerical integrations (see (25), (74), (75)
and (76)).

The accuracy of the solutions is illustrated in Fig. 11.
In particular, the figure shows that the left- and right-
hand sides of the RS equations still agree with a good
accuracy well above the matching point5. This constitutes
a consistency condition as discussed in [6]. We have checked
that its fulfillment is a direct consequence of imposing
the no-cusp conditions. At this level, there is a notable
difference between the ππ and the πK RS equations. In the
case of ππ scattering [6], it is found that imposing a single
no-cusp condition for the P -wave is sufficient to ensure
that the no-cusp condition holds to a good approximation
for the S-waves as well, and the consistency conditions are
well satisfied. In the πK case, we find that it is necessary to
impose no-cusp conditions for the two phase shifts δ1/2

0 (s)

5 We are then exceeding the strict domain of applicability
of the equations, but they are still expected to be satisfied
approximately.

and δ
1/2
1 (s). In fact, even after doing so, we find that a

(small) cusp remains for the third phase shift δ3/2
0 (s). This

does not represent a serious problem, in practice, because
this phase shift is not determined very precisely in the
vicinity of the matching point.

Further consistency conditions ought to be considered
in the ππ → KK sector. Here as well, one expects that the
RS equations should be approximately satisfied above the
matching point. This point is illustrated in Fig. 12 which
compares the moduli of g0

0(t) and g1
1(t) computed from the

RS equations to the experimental input for these quantities.
Very good agreement is observed for g1

1(t). In contrast, we
find that the agreement for g0

0(t) is moderately good. In the
range t ≥ 4m2

K we have checked that the unitarity bound
|Sππ→KK | ≤ 1 is obeyed. Adopting a larger value for the
matching point tm improves the input–output agreement
for t > tm but leads to violation of unitarity for t < tm
close to the KK threshold.

Another consistency check can be performed. In the
region where t ≤ 4m2

π, g0
0(t) and g1

1(t) can be obtained not
only from (35) which are based on the fixed-us dispersion
relations but also from the fixed-t ones which are valid
in this domain. Both kinds of DR’s agree by construction
at t = 0; the fact that they should continue to agree for
negative values of t is not trivial and constitutes a check
of the consistency of the experimental input and of the RS
solutions. We show these results for t ≤ 0 in Fig. 13.

6.2 Error evaluations and the S-wave scattering lengths

Our general procedure for evaluating the errors consists
in performing variations of the parameters which enter in
the description of the input – making use of the errors on
these parameters and their covariance matrices as provided
by running the MINUIT package [63]. The experimental
errors are assumed to be essentially of statistical origin
and the errors at different energy points are assumed to be
independent. Let us discuss first the case of the I = 1

2 S-
and P -waves. It is clear that this part of the input plays a
crucial role as it controls the boundary conditions which
determine the two S-wave scattering lengths. To begin
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0(t) and g1
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The lines are obtained from the fixed-us DR’s and the points
are obtained from the fixed-t DR’s

with, one notes that variations of the input in the energy
region E � 1.5 GeV has a negligibly small influence, so we
will consider only the energy region

√
sm ≤ E ≤ 1.5 GeV.

We have performed two different kinds of fits in order to
check the validity of the determination of the phase shifts,
their derivatives, and the errors obtained from varying the
parameters at the matching point E =

√
sm. Firstly, we

perform“global” fits based onaK-matrix parameterization
with six parameters for the S-wave and seven parameters
for the P -wave. These parameters are determined such as
to minimize the chi-square in the energy region 0.90 ≤ E ≤
1.50 GeV. Secondly, we have performed “local” fits in which
one considers separately a small energy region surrounding
the matching point 0.90 ≤ E ≤ 1.1 GeV and the remaining
energy region. In the small region we approximate the S-
wave phase shift by a quadratic polynomial,

δ
1/2
0 (s) = a+ b(s− sm) + c(s− sm)2,

0.90 ≤ E ≤ 1.1 GeV , (84)

while for the P -wave we use a linear approximation after
subtracting the tail of the K∗ resonance:

δ
1/2
1 (s) − arctan

mK∗ΓK∗

m2
K∗ − s

= a+ b(s− sm) . (85)

The results from these two fits concerning the input at the
matching point are shown in Table 1. One observes that
the determinations of the phases at the matching point
are in good agreement as well as that of the errors. The
determinations of the derivative of the P -wave agree, while
those of the derivative of the S-wave are only in marginal
agreement. In this case, we consider the determination
from the global fit to be somewhat more reliable, as it has
continuity and smoothness built in.

We can now derive the constraints on the S-wave scat-
tering lengths which arise upon solving the RS equations
making use of the available experimental input above the

Table 1. S- and P -waves inputs at the matching point as
determined from two different types of fit to the data of Aston
et al. [27] (see text). Phases are in degrees and their derivatives
in degrees × GeV−1

Phase Error Derivative Error
l = 0 global 46.5 0.6 44.1 5.8
l = 0 local 46.2 0.6 56.9 6.6
l = 1 global 155.8 0.4 148.0 2.8
l = 1 local 156.2 0.3 147.4 2.9

Table 2. Sources of error arising from different parts of the
input and the resulting errors in the determination of the l = 0
scattering lengths in units of m−1

π

f
1/2
0 f

1/2
1 f

3/2
0 g0

0 g1
1 l ≥ 2

102∆a
1/2
0 1.89 0.28 0.40 0.79 0.05 0.23

102∆a
3/2
0 0.55 0.09 0.39 0.32 0.14 0.11

102∆
(
a
1/2
0 − a

3/2
0

)
1.35 0.18 0.10 0.55 0.10 0.15

matching point. Let us first quote some results concern-
ing the errors. Table 2 shows how the errors affecting the
various pieces of input propagate to the two S-wave scat-
tering lengths. One can see that the two main sources of
uncertainty are
(a) the πK I = 1

2 S-wave and
(b) the ππ → KK I = 0 S-wave. In contrast, the influence
of the partial waves with l ≥ 2 (in which the Regge region
is also included) is rather modest.

Finally, this analysis generates the following results for
the scattering lengths aI

0:

mπ a
1/2
0 � 0.224 ± 0.022,

mπ a
3/2
0 � (−0.448 ± 0.077) 10−1 . (86)

There is a significant correlation between these two quan-
tities; the correlation parameter is positive and its value is

ρ 1
2

3
2

= 0.908 . (87)

The one-sigma error ellipse corresponding to the above
results for the S-wave scattering lengths is represented in
Fig. 14. Our results are compatible with the band obtained
for a1/2

0 , a
3/2
0 in [25]. We find a much smaller allowed region

for the scattering lengths simply because we have used
considerably better experimental input for the S- and P -
waves: in the work of [25] no data at all were available for
E ≥ 1.1 GeV.

Predictions from ChPT at O(p4) for the S-wave scat-
tering lengths were presented in [18]:

mπa
1/2
0 = 0.19 ± 0.02 ,

mπa
3/2
0 = −0.05 ± 0.02 .

( [18]) (88)

Within the errors these results appear to be compatible
with those from the RS equations. A more refined com-
parison, however, should take the correlation into account.
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Fig. 14. Standard error ellipse for the S-wave scattering lengths
obtained from solving the RS equations with boundary con-
ditions. The corresponding ellipse in the ChPT calculation at
O(p4) and the current-algebra result are also plotted

Computing the correlation parameter under the same as-
sumptions as used in [18] for the evaluation of the errors
one obtains the standard error ellipse shown in Fig. 14. One
observes that the ChPT ellipse is very narrow and does
not intersect the corresponding error ellipse resulting from
the RS equations6. If one judges from the size of the O(p4)
corrections as compared to the current-algebra result, it
seems not unreasonable to attribute the remaining discrep-
ancy to O(p6) effects. We quote also our results for the two
combinations of scattering lengths proportional to a−

0 , a+
0 :

mπ (a1/2
0 − a

3/2
0 ) � 0.269 ± 0.015,

mπ (a1/2
0 + 2a3/2

0 ) � 0.134 ± 0.037, (89)

which are of interest in connection with the πK atom: the
square of the first combination is proportional to the inverse
lifetime of the atom and the sum of the two combinations
is proportional to the energy shift of the lowest atomic
level [65]. The correlation parameter for a−

0 , a+
0 is also

positive and its value is

ρ−+ = 0.925 . (90)

For comparison, let us mention the results for the combi-
nations proportional to a−

0 , a+
0 in ChPT,

mπ (a1/2
0 − a

3/2
0 ) � 0.238 ± 0.002,

mπ (a1/2
0 + 2a3/2

0 ) � 0.097 ± 0.047.

[
ChPT O(p4)

]
(91)

6 This particular shape reflects two features of the scattering
lengths a−

0 and a+
0 in the chiral expansion at order p4:

(a) they are essentially uncorrelated (the correlation parameter
is ρ−+ � −0.15),
(b) the error on a−

0 is very small because it involves a single
chiral coupling (L5) which is multiplied by m4

π, while a+
0 involves

seven chiral parameters which are multiplied by m2
πm2

K .

The uncertainty affecting a−
0 is remarkably small. This,

however, could be an artifact of the O(p4) approxima-
tion. It remains to investigate how O(p6) corrections affect
this result.

As discussed above, the fact that the twoS-wave scatter-
ing lengths are determined independently (to some extent)
comes from imposing the no-cusp matching conditions. The
difference of the two scattering lengths, a1/2

0 − a
3/2
0 , can

be determined in an alternative way from a sum rule [66]
(see (17)). Using this sum rule one finds

mπ(a1/2
0 − a

3/2
0 ) = 0.251 ± 0.014 [sum rule] . (92)

In the evaluation, we use our results for the RS solutions in
the integration regions s′ ≤ sm, t′ ≤ tm. The propagation
of the experimental errors is studied in the same way as
explained above. A rather small error is found, but one
must keep in mind that the dependence on the asymptotic
region is significant here, and it is difficult to evaluate the
error from this region in a very reliable way.

The central value arising from the sum rule is smaller
than what is obtained from the RS solution, but the two
results are compatible within their errors. We also note
that the output of the sum rule is significantly influenced
by the values of the scattering lengths used as input in the
integrand. For this reason, the result obtained here differs
from the one quoted in [15].

Before we present the results for the amplitudes in the
threshold region, a few remarks are in order concerning the
intermediate energy region, that ranges from the threshold
up to the matching point. Experimental data from produc-
tion experiments exist below 1 GeV, but one has to keep in
mind the possibility that systematic errors may have been
underestimated in this energy region in such experiments
(a discussion of the ππ case can be found in [67]). Figure 15
shows the I = 1

2 P -wave phase shift from the RS equations
compared to experiment. The central curve correspond to
solving with a

1/2
0 , a

3/2
0 taken at the center of the ellipse,

see Fig. 14, while the upper and lower curves are obtained
by using the points on the ellipse with the maximal and
the minimal values for a1/2

0 respectively. The experimental
results are seen to deviate from the solutions as the energy
decreases from the matching point. In particular, the mass
of the K∗ which is predicted from the RS equations is

mK∗ = (905 ± 2) MeV (93)

(wheremK∗ is defined such that δ1/2
1 (mK∗) = π/2), nearly

10 MeV larger than the mass quoted in [27] (mK∗0 = 896±
0.7 MeV).

This discrepancy may appear worrying at first sight. It
is caused, in part, by isospin breaking which is not taken
into account by the RS equations. This could generate an
uncertainty of a few MeV as to the value of the K∗ mass
that should come out from solving the equations7. Besides,
it cannot be excluded that the mass of the K∗ may not

7 For instance, the result depends on the input values for
mπ and mK for which we used mπ = 0.13957 GeV, mK =
0.4957 GeV.
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be as accurately known as one might believe. The deter-
minations of the K∗+, K∗0 masses used by the PDG are
all based on hadronic production experiments. Recently,
a measurement of the K∗+ mass based on the τ decay
mode τ → KSπντ indicated a shift by 4–5 MeV as com-
pared to the PDG value [68]. In principle, this method is
more reliable, because it is free of any final state interac-
tion problems, but better statistics are needed to clarify
this issue.

The two S-wave phase shifts predicted by the RS equa-
tions are shown in Fig. 16. For the isospin I = 1

2 the RS
solution does not exhibit any of the oscillations appear-
ing in the data of [26]. For the isospin I = 3

2 phase shift,
the experimental data for E < 0.9 GeV lie systematically
below the RS curve, by 2–3 standard deviations. The RS
equations also predict the I = 3

2 P -wave phase shift; the
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result is shown in Fig. 17. This phase shift displays the
unusual feature that it is positive at very low energy and
changes sign as the energy increases. In the region around
1 GeV the results are in qualitative agreement with the
experimental data of Estabrooks et al.

6.3 Results for threshold
and sub-threshold expansion parameters

The behavior of amplitudes at very small energies is con-
veniently characterized by sets of expansion parameters,
which are particularly useful for making comparisons with
chiral expansions. We consider first the set obtained by
performing an expansion around the πK threshold. These
parameters are conventionally defined from the partial-
wave amplitudes as follows:

2√
s
Ref I

l (s) = q2l
(
aI

l + bIl q
2 + cIl q

4 + . . .
)
, (94)

with

s = m2
+ +

m2
+q

2

mπmK
− m2

+m
2
−q

4

4m3
πm

3
K

+ . . . (95)

Once a solution of the RS equations is obtained, all the
threshold parameters are predicted. The two S-wave scat-
tering lengths are determined from the matching condi-
tions, as explained above. The other threshold parameters
may be obtained from the dispersive representation (20) in
the form of sum rules. These are obtained by projecting the
DR’s over the relevant partial wave and then expanding the
variable s in powers of q2. Divergences may appear in this
process because derivatives are discontinuous at thresh-
old and it must be specified that the limit is to be taken
from above. This problem is easily handled by computing
some pieces of the integrals analytically as explained in [6].
The sum rules are evaluated by using RS solutions below
the matching points and the fits to the experimental data
above. For l = 0, 1 we have computed the parameters
al, bl and cl in an alternative manner by using our solu-
tion for Re f I

l (s) for three values of s and solving a linear
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Table 3. Results for the threshold expansion parameters (see (94)) computed
from the dispersive representations and the RS equations’ solutions. The third
column shows the difference of the I = 1

2 and the I = 3
2 parameters

I = 1
2 I = 3

2

(
I = 1

2

) − (
I = 3

2

)

m3
π aI

1 (0.19 ± 0.01)10−1 (0.65 ± 0.44)10−3 (0.18 ± 0.01)10−1

m5
π aI

2 (0.47 ± 0.03)10−3 (−0.11 ± 0.27)10−4 (0.48 ± 0.01)10−3

m7
π aI

3 (0.23 ± 0.03)10−4 (0.91 ± 0.30)10−5 (0.14 ± 0.01)10−4

m3
π bI

0 (0.85 ± 0.04)10−1 (−0.37 ± 0.03)10−1 0.12 ± 0.01
m5

π bI
1 (0.18 ± 0.02)10−2 (−0.92 ± 0.17)10−3 (0.27 ± 0.01)10−2

m7
π bI

2 (−0.14 ± 0.03)10−3 (−0.96 ± 0.26)10−4 (−0.48 ± 0.02)10−4

m5
π cI

0 (−0.45 ± 0.04)10−1 (0.18 ± 0.02)10−1 (−0.62 ± 0.06)10−1

m7
π cI

1 (0.71 ± 0.11)10−3 (0.51 ± 0.09)10−3 (0.20 ± 0.03)10−3

Table 4. Results for the dimensionless subthreshold expansion parameters defined in (97)
and (99). The last two columns indicate the chiral order of the leading tree-level contri-
bution to each parameter in SU(3) and SU(2) ChPT respectively

[69] SU(3) SU(2)
C−

00 8.92 ± 0.38 7.31 ± 0.90 2 1
C+

00 2.01 ± 1.10 −0.52 ± 2.03 2 2
C+

10 0.87 ± 0.08 0.55 ± 0.07 2 2
C+

01 2.07 ± 0.10 2.06 ± 0.22 4 2
C−

10 0.31 ± 0.01 0.21 ± 0.04 4 3
C+

20 (0.24 ± 0.06)10−1 4 4
C−

01 0.62 ± 0.06 0.51 ± 0.10 6 3
C+

11 (−0.66 ± 0.10)10−1 −0.04 ± 0.02 6 4
C−

20 (0.85 ± 0.01)10−2 6 5
C+

30 (0.34 ± 0.08)10−2 6 6
C+

02 0.34 ± 0.03 8 4

system of equations. The two methods were in very good
agreement and the results for the threshold parameters are
summarized in Table 3.

The values of the P -waves scattering lengths in ChPT
at NLO were given in [18]:

m3
πa

1/2
1 = 0.016 ± 0.003,

m3
πa

3/2
1 = (1.13 ± 0.57) 10−3.

( [18]) (96)

Within the errors, these values are compatible with our
corresponding results displayed in Table 3.

ChPT expansions of the amplitude are expected to have
best convergence properties in unphysical regions away
from any threshold singularity. The dispersive representa-
tions derived in Sect. 2 allow us to evaluate the amplitude
in such regions. A first domain considered in the literature
is the neighborhood of the point s = u, t = 0. The following
set of expansion parameters are conventionally introduced:

F+(s, t) =
∑

C̃+
ij t

iν2j ,

F−(s, t) = ν
{∑

C̃−
ij t

iν2j
}
, (97)

where
ν =

s− u

4mK
. (98)

It is customary to quote the values of the dimensionless
parameters C±

ij which are related to C̃±
ij by

C+
ij = (mπ+)2i+2j C̃+

ij , C−
ij = (mπ+)2i+2j+1 C̃−

ij . (99)

The results for the subthreshold expansion parameters are
collected in Table 4. The table also shows for comparison
results from [69], which used fits to the experimental data
of Estabrooks et al. [26] combined with earlier sets of data
(taking into account the data points below 1 GeV as well as
above). The authors of [69] observed that the low-energy
part of the data of Estabrooks et al. leads to inconsistencies
with a dispersive representation ofF−. The agreement with
our results is reasonable for the coefficients C−

ij . For the
coefficientsC+

ij the results are compatible within the errors,
except for the coefficientC+

10, for which we find a somewhat
larger value. Another point of interest is the Cheng-Dashen
point s = u, t = 2m2

π. The value of the amplitudeF+ at this
point can be related to the kaon sigma-term [70] (see [71]
for a recent review). We obtain for this quantity

F+(m2
K , 2m

2
π) = 3.90 ± 1.50 . (100)
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Table 5. Chiral couplings Lr
i(µ), µ = 0.77 GeV obtained by matching the

dispersive results for the subthreshold expansion parameters (see Table 4)
with their chiral expansion at order p4. Also shown are the results from [15]
(col. 3) as well as those from [16] in which fits to the Kl4 form factors were
perfomed using chiral expansions at order p4 (col. 4) as well as p6 (col. 5)

πK Roy–Steiner πK sum rules Kl4, O(p4) Kl4, O(p6)
103 L1 1.05 ± 0.12 0.84 ± 0.15 0.46 ± 0.24 0.53 ± 0.25
103 L2 1.32 ± 0.03 1.36 ± 0.13 1.49 ± 0.23 0.71 ± 0.27
103 L3 −4.53 ± 0.14 −3.65 ± 0.45 −3.18 ± 0.85 −2.72 ± 1.12
103 L4 0.53 ± 0.39 0.22 ± 0.30 −0.2 ± 0.9

6.4 Some implications for the O(p4) chiral couplings

In this section we present some results on the O(p4) cou-
plings of the SU(3) chiral expansion, which are easily de-
rived from the subthreshold parameters obtained above.
More detailed comparisons between chiral expansions and
dispersive representations of the πK scattering amplitude
should be performed, but this is left for future work. The
expression for this amplitude in ChPT at order p4 was
presented in [17]. More specifically, we will make use of
a reformulation of the expression of [17] in which F0 is
expressed in terms of Fπ only (and not FK) as in [15] (a
factor J̄πK(s) is missing in (41) of that reference). From
this, it is straightforward to obtain the chiral formulas for
the subthreshold expansion parameters. We present these
in numerical form below, in which we use the following
values for the masses, the pion decay constant and the
renormalization scale µ:

mπ = 0.13957, mK = 0.4957,

mη = 0.5473, Fπ = 0.0924, (101)

µ = 0.77 (all in GeV) .

The dimensionless subthreshold parameters C+
ij then have

the following numerical expressions in ChPT at NLO:

C+
00 = 0.14985

+
8m2

πm
2
K

F 4
π

[4L1 + L3 − (4L4 + L5) + 2(L8 + 2L6)] ,

C+
10 = 0.45754

+
4(m2

K +m2
π)m2

π

F 4
π

[−(4L1 + L3) + 2L4] +
2m4

π

F 4
π

L5,

C+
20 = 0.02554 +

2m4
π

F 4
π

[
4L1 + L2 +

5
4
L3

]
,

C+
01 = 1.67285 +

8m2
Km

2
π

F 4
π

[4L2 + L3] , (102)

while the subthreshold parameters C−
ij read

C−
00 = 8.42568 +

8mKm
3
π

F 4
π

L5 ,

C−
10 = −0.02533 − 4mKm

3
π

F 4
π

L3 . (103)

In order to lighten the notation we have denoted the renor-
malized couplings Lr

i(µ = 0.77) simply by Li. It is now easy
to solve for the Li making use of the results from Table 4,
the results for L1, . . . , L4 are collected in Table 5. The er-
rors are obtained, as before, by varying all the parameters
of the fits to the input data and taking into account the cor-
relations. These errors appear to be rather small, but they
only reflect the uncertainty coming from the input data.
The dominant source of uncertainty in the determination
of the Li comes from the unknown higher-order terms in
the chiral expansion; this uncertainty is expected to be
of the order of 30–40% . This can be seen from the table
which shows the results of some alternative determinations
based on the Kl4 form factors [16,72,73] and on πK sum
rules [15]8. We also quote the results that we get for L5
and for L8 + 2L6 which have rather large errors:

103L5 = 3.19±2.40, 103(L8+2L6) = 3.66±1.52 . (104)

The coupling L5 is determined, in principle, from C−
00 but

its contribution turns out to be suppressed, as it appears
multiplied by a factorm2

π. In order to determineL8+2L6 we
usedC+

00 and the valueL5 � 1.4·10−3 derived fromFK/Fπ.
The large uncertainty for L8+2L6 reflects the one affecting
the coefficient C+

00 or, alternatively, the uncertainty in the
combination of scattering lengths a1/2

0 + 2a3/2
0 . This could

improve considerably once experimental results from πK
atoms are available. Our result for L4, though affected by a
sizable error, agrees with the evaluations [74,75] based on a
dispersive method for constructing scalar form factors [76]
and is suggestive of a significant violation of the OZI rule
in the scalar sector.

7 Conclusions

In this paper, we have set up and then solved a system of
equations à la Roy and Steiner for the S- and P -partial
waves of the πK → πK and the ππ → KK amplitudes.
These equations are necessary consequences of analyticity
and crossing, together with plausible assumptions concern-
ing the range of effective applicability of elastic unitarity. In
treating these equations, the approach advocated recently

8 In that paper, terms of order p6 were dropped in the disper-
sive representations and the phase shifts used below 1 GeV in
the sum rules were not constrained to obey the RS equations.
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in [6] was followed, which consists in choosing a matching
point around 1 GeV and enforcing a set of boundary con-
ditions at this point. As input for this analysis, we have
exploited for the first time the high-statistics data which are
now available from KN → KπN as well as πN → KKN
production experiments.

The main result obtained from solving the RS equations
together with the boundary conditions is the determina-
tion of an allowed region for the two S-wave scattering
lengths which is shown, as a one-sigma ellipse, in Fig. 14.
This region is much smaller than the ones resulting from
older analyses, e.g. [25]; this simply reflects the better ac-
curacy of the experimental input data used here. Using
this result together with the dispersive representations one
can determine the πK scattering amplitude in regions of
very low energies inaccessible to experiment. We have com-
puted a set of sub-threshold expansion parameters and then
matched the result with the SU(3) ChPT expansion of the
amplitude at NLO [17, 18]. This leads to a determination
of the Gasser–Leutwyler coupling constants L1, L2, L3,
and L4. Comparisons with previous results is suggestive
of significant O(p6) effects but certainly not so large as to
invalidate the SU(3) expansion. The bounds that we have
obtained for the S-wave scattering lengths constrain the
combination 2L6 + L8.

The value of L4 is of particular interest. Since this
low-energy constant violates the Zweig rule in the scalar
channel, its value is related to the role of sea-quark effects
and to the link between the SU(2) and SU(3) chiral lim-
its [12,13]. Moreover, it was recently pointed out that the
value of L4 can be used to discriminate between different
assignments for the scalar-meson multiplets [77], such a
connection was also illustrated in [74]. The value that we
found is in agreement with the determination based on the
scalar form factors [74,75,78] but disagrees with the predic-
tion from the chiral unitarization model [79]. More detailed
comparisons with ChPT expansions should be performed
but this is left for future work. At present, the amplitude
has been computed at order p4 in the three-flavor expan-
sion and, more recently, in the two-flavor expansion [80]
(see also [81]). The latter is expected to have better con-
vergence but it is less predictive: let us however remark
that the expression of the antisymmetric amplitude F−
involves only three SU(2) chiral parameters.

Another topic of interest in connection with πK scat-
tering is the problem of localizing unambiguously a possible
κ-meson (see [82] for a review of the literature). A naive
test based on the collision time concept [83] applied to our
results for the S-wave phase shift gives no indication for
a resonance. In principle, our results provide an improved
and more complete input for an analysis such as performed
in [82].

Dispersive analyses, of course, cannot replace low-en-
ergy measurements. Much more stringent constraints on
the S-wave scattering lengths could be derived from the
RS equations if reliable data were available at low en-
ergy. For instance, the analysis could be much improved
soon, once low-energy data on the P -wave phase shifts are
obtained from the τ → Kπντ decay. In the long term,

S-wave phase shifts could be measured in D → Kπlνl de-
cays [30]. Finally, direct measurements of combinations of
S-wave scattering lengths are planned, based on forming
πK atoms and measuring their lifetime and the shift of
the lowest atomic level [33] (see [84,85] for a discussion of
related theoretical issues).

Acknowledgements. We are grateful to J. Stern for his interest,
discussions and suggestions. B.M. would like to thank B. Anan-
thanarayan for useful remarks and M.R. Robilotta for offering
him a copy of Höhler’s book. P.B. would like to thank the IPN
Orsay for its hospitality and financial support during his stay
in Paris.

A Continuity of g1
1(t) at t = tm

In this appendix we prove the validity of (78)

lim
ε→0

gI
l (tm ± ε)|sol = gI

l (tm)|input (105)

for g1
1(t). We will consider the limit from below, t → t−m;

the other limit can be handled in an exactly similar way.
Let us start from (76) for g1

1(t) which expresses the solution
in terms of the input values for the phase Φ1

1(t
′) and the

modulus |g1
1(t′)|:
g1
1(t)|sol = ∆1

1(t) + I1(t) + I2(t) , (106)

with

I1(t) = Ω1
1(t)

t

π

∫ tm

4m2
π

d t′
∆1

1(t
′) sinΦ1

1(t
′)

Ω1
1R(t′)t′(t′ − t)

,

I2(t) = Ω1
1(t)

t

π

∫ ∞

tm

d t′
|g1

1(t′)| sinΦ1
1(t

′)
Ω1

1R(t′)t′(t′ − t)
, (107)

of which the behavior when t → t−m has to be investigated.
In a first step, one writes I1,2 as

I1(t) = Ω1
1(t)

t

π

{∫ tm

tm−a

d t′
∆1

1(t
′) sinΦ1

1(t
′)

Ω1
1R(t′)t′(t′ − t)

+
∫ tm−a

4m2
π

d t′
∆1

1(t
′) sinΦ1

1(t
′)

Ω1
1R(t′)t′(t′ − t)

}
,

I2(t) = Ω1
1(t)

t

π

{∫ tm+a

tm

d t′
|g1

1(t′)| sinΦ1
1(t

′)
Ω1

1R(t′)t′(t′ − t)

+
∫ ∞

tm+a

d t′
|g1

1(t′)| sinΦ1
1(t

′)
Ω1

1R(t′)t′(t′ − t)

}
, (108)

where a is a small positive number. When t → t−m the
modulus of Ω1

1 goes like

|Ω1
1(t)| ∼ |t− tm|Φ1

1(tm)
π , (109)

and therefore vanishes since Φ1
1(tm) > 0. This implies that

the second terms of I1,2(t) in (108) also vanish when t → t−m
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because the integrals multiplied by Ω1
1 remain finite:

I1(t → t−m) = Ω1
1(t)

t

π

∫ tm

tm−a

d t′
∆1

1(t
′) sinΦ1

1(t
′)

Ω1
1R(t′)t′(t′ − t)

,

I2(t → t−m) = Ω1
1(t)

t

π

∫ tm+a

tm

d t′
|g1

1(t′)| sinΦ1
1(t

′)
Ω1

1R(t′)t′(t′ − t)
.

(110)

Assuming that a is small enough we can replace Ω1
1R(t′)

by its leading behavior when t′ → tm ( (77) ) and we
make the same replacement for Ω1

1(t). Next, we perform
the following change of variables in the integrals:

t′ = (tm − t)v + tm , (111)

the limits are then expressed in the following way:

I1(t → t−m) (112)

= ∆1
1(tm) exp(iΦ1

1(tm)) sinΦ1
1(tm)

1
π

∫ ∞

0

dv
vα(1 − v)

I2(t → t−m) = g1
1(tm) sinΦ1

1(tm)
1
π

∫ ∞

0

dv
vα(1 + v)

,

with

α =
Φ1

1(tm)
π

. (113)

The result on the value of g1
1(t)|sol at the matching point

follows from the values of the two definite integrals [86]
(which are well defined for 0 < α < 1)

1
π

∫ ∞

0

dv
vα(1 − v)

= −cos(πα)
sin(πα)

+ i,

1
π

∫ ∞

0

dv
vα(1 + v)

=
1

sin(πα)
, (114)

as this implies

I1(t → t−m) = −∆1
1(tm), I2(t → t−m) = g1

1(tm) , (115)

which proves the continuity equation (105) for g1
1 when tm

is approached from below. Similar arguments can be used
to prove continuity when tm is approached from above.
Finally, the proof is easily generalized to the case of g0

0
which involves one more subtraction.

References

1. J. Gasser, H. Leutwyler, Annals Phys. 158, 142 (1984)
2. J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 465 (1985)
3. J.L. Basdevant, J.C. Le Guillou, H. Navelet, Nuovo Cim.

A 7, 363 (1972)
4. J.L. Basdevant, C.D. Froggatt, J.L. Petersen, Phys. Lett.

B 41, 173 (1972); Nucl. Phys. B 72, 413 (1974)
5. M.R. Pennington, S.D. Protopopescu, Phys. Rev. D 7,

1429, 2591 (1973)
6. B. Ananthanarayan, G. Colangelo, J. Gasser, H. Leutwyler,

Phys. Rept. 353, 207 (2001) [hep-ph/0005297]

7. G. Colangelo, J. Gasser, H. Leutwyler, Nucl. Phys. B 603,
125 (2001) [hep-ph/0103088]

8. R. Kaminski, L. Lesniak, B. Loiseau, Phys. Lett. B 551,
241 (2003) [hep-ph/0210334]

9. S. Pislak et al., Phys. Rev. D 67, 072004 (2003) [hep-
ex/0301040]

10. G. Colangelo, J. Gasser, H. Leutwyler, Phys. Rev. Lett.
86, 5008 (2001) [hep-ph/0103063]

11. S. Descotes-Genon, N.H. Fuchs, L. Girlanda, J. Stern, Eur.
Phys. J. C 24, 469 (2002) [hep-ph/0112088]

12. S. Descotes-Genon, L. Girlanda, J. Stern, JHEP 0001, 041
(2000) [hep-ph/9910537]

13. S. Descotes-Genon, L. Girlanda, J. Stern, Eur. Phys. J. C
27, 115 (2003) [hep-ph/0207337]
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432 P. Büttiker et al.: A new analysis of πK scattering from Roy and Steiner type equations

43. A.M. Polyakov, Nucl. Phys. Proc. Suppl. 68, 1 (1998) [hep-
th/9711002]

44. S.W. MacDowell, Phys. Rev. 116, 774 (1959)
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